

# **AICPA & CIMA Data Analytics Summer School**

10 - 14 August at Gonville & Caius College, Cambridge, UK

# CPE/CPD: 40+ hours

# **Day 1: Data Analysis Fundamentals**

9:00 Opening remarks

# 9:05 Disruption

- Identify hurdles to becoming a data-driven organization
- Analyze data practices in the organization
- Identify how data can benefit the organization
- Distinguish how to be a proactive data practitioner

# 9:25 Business Analysis Principles

- Identify the categories of analytical people
- Distinguish and define roles and responsibilities of professionals in data analysis

# 9:45 Data Driven Decision Making

- Identify cultural barriers
- Distinguish solutions to cultural and cross-functional barriers
- Identify six steps of the data-driven decision-making model
- 10:05 Morning coffee break

# 10:30 Ecosystem - Relational Databases

- Identify the nature of relational databases
- Recall the purpose of the SQL language
- Distinguish between the key aspects of ACID
- Identify the meaning of ETL

# 11:30 Ecosystem – Not Only SQL

- Distinguish between big data and other data storage tools
- Identify ways of interacting with MongoDB
- Distinguish between document stores and graph stores
- 12:30 Lunch



# 13:30 Ecosystem – Big Data

- Identify key functions of big data technologies
- Determine the utility of Hadoop
- Identify the purpose of MapReduce

# 14:15 Ecosystem – Statistical Tool, Machine Learning, and Data Visualization

- Identify tools for statistical analysis
- Distinguish between Python and R for statistical analysis purposes
- Identify purpose of machine learning
- Distinguish between visualization tools

# 15:15 Afternoon break

# 15:40 Data Lifecycle Management

- Identify the stages in the data life cycle
- Distinguish between ways that data enters the organization
- Identify the forms data takes as it is stored and used within the organization
- Identify the stages in the data life cycle

# 16:10 Requirements Gathering

- Analyze why requirement gathering process is critical to proper analysis
- Distinguish between the ways data is consumed (the three V's of data)
- Understand how requirement gathering fits with the development of a customer journey map
- Distinguish between the stages of the customer journey map
- 17:10 End of day

# **Day 2: Application of Data Analysis Essentials**

- 9:00 Opening remarks
- 9:05 **Types of Variables** 
  - Determine the nature of variables in data analysis
  - Differentiate between numerical and categorical variables
  - Distinguish between nominal and ordinal variables
  - Differentiate between interval and ratio
  - Distinguish between continuous and discrete



# 9:50 Central Tendency of Data

- Identify the components of central tendency
- Calculate mean/median/mode
- Identify the steps in calculating weighted/geometric/harmonic means
- 10:20 Morning coffee break

#### 10:40 Measurement and Variability

- Determine core aspects of measurement and variability
- Calculate range
- Calculate quartiles
- Calculate interquartile range
- Calculate variance
- Calculate standard deviation
- Analyze permutation with repetition
- Analyze combinations without repetition

#### 11:40 Basic Probability

- Analyze the uses of probability
- Differentiate between sample space, event, independent and dependent
- Calculate probability

#### 12:10 **Probability and Ven Diagramming**

- Analyze "this" OR "that" diagram
- Analyze "this" AND "that" diagram
- Analyze exclusive diagram
- Calculate join probability
- Calculate conditional probability

#### 12:55 Lunch

#### 13:45 Calculating Probability

- Calculate P using a contingency table
- Calculate P from trees
- Calculate Bayes' theorem
- Calculate the mean in terms of probabilities
- Calculate the variance and standard deviation in terms of probabilities



# 14:45 Distributions

- Analyze distributions
- Identify discrete distributions
- Calculate binomial distributions
- Calculate Poisson distributions
- 15:30 Afternoon break

# 15:45 Continuous Distributions

- Identify continuous distributions
- Calculate continuous distributions
- Identify cumulative distributions
- Identify normal distributions
- Calculate normal distributions
- Compare quartiles and normal distributions
- Identify skew

# 16:30 Statistics in R Case Study

- Apply Vectors in R
- Use Data Frames in R
- Use data from an external file in R
- Apply mean/median/standard deviation in R

# 16:50 Distributions in R Case Study

- Functions for working with:
- Use Normal distribution function in R
- Use Poisson distribution function in R
- Apply Scatter plot in R
- Apply Histogram in R
- Apply Box Plot in R

# 17:10 Fraud Detection Case Study

- Apply scripts in R
- Create reusable, user defined function in R
- Use Bayes' Theorem in R
- Choose a function flexible to allow for different input parameters

17:30 End of day



# **Day 3: Data Analytics Modeling**

9:00 Opening remarks

# 9:05 Understanding Your Business

- Identify business value
- Determine how business and corporate drivers impact the strategic direction of the business
- Analyze different project processes used in working with data
- Compare different types of data

# 9:35 Data Profiling

- Identify core data profiling tasks
- Identify outliers
- Use tools for data profiling
- 10:20 Morning coffee break

# 10:40 Data Cleansing

- Identify core data cleansing tasks
- Use tools for cleansing

# 11:30 Data Quality and MDM

- Identify role of data quality in organization
- Identify role of MDM in organization
- Use tools for data quality and MDM

# 12:30 Lunch

# 13:30 ETL Tools

- Distinguish between ETL processes
- Use Talend Data Integration
- Use MSSQL SSIS

# 14:30 Data Warehousing

- Identify purpose of data warehousing
- Identify between key components of a data warehouse
- Distinguish between data warehouses and data lakes
- Determine the role of different warehousing techniques



15:00 Afternoon break

# 15:15 Data Warehousing Tools

- Differentiate between utility of relational DW, cubes, and in-memory scenarios
- Compare techniques for data integration with regards to warehousing
- Use warehousing tools
- Use integration tools for warehousing

# 15:45 Understanding Data – Overview

- Identify data roles in the organization
- Determine how data moves through the data lifecycle

# 16:15 Understanding Data – Data Modeling

- Identify the role of data modeling in the organization
- Analyze data modeling techniques
- Use tools for data modeling
- 17:15 End of day

# Required post-work:

# Understanding Data – Structured Data Tools (90 mins)

Identify core tools for RDBMS's (structured storage) Use SQL to perform CRUD tasks against a database

# Understanding Data – Unstructured Data Tools (90 mins)

Identify tools in unstructured stack Use tools for unstructured data management

# **Day 4: Forecasting and Predictive Analytics**

9:00 Opening remarks

# 9:05 **Bivariate regression**

• Identify linear regression models and their application in data analysis



- Calculate linear bivariate regressions in order to model commonly encountered problems
- Determine the quality of fit of a linear model, establishing its usefulness for prediction
- 10:20 Morning coffee break

# 10:45 Multivariate regression

- Identify multivariate linear regression models in data analytics
- Calculate linear multivariate regressions in order to model commonly encountered problems
- Determine the quality of fit of a multivariate linear model, establishing its usefulness for prediction

# 12:00 Other regressions

- Identify logistic regression models and apply those models to common business problems
- Determine the quality of fit of a multivariate linear model

# 12:45 Forecasting in time

- Identify the components of a time forecast in order to predict future values from a model
- Differentiate seasonal variations from trends in order to improve prediction of future values from a model
- Calculate seasonal indices so that seasonal variations cab be qualified in the model

# 13:15 Lunch

# 14:00 Classification K-Nearest Neighbor (KNN)

- Determine core aspects of classification in order to understand when it's an appropriate technique
- Calculate kNN algorithm with fixed or variable number of k and assess the quality of the results

# 14:45 Classification Naïve Bayes

- Identify Naïve Bayes classification and when it is applicable
- Apply a Naïve Bayes classification to a common business problem

# 15:15 Afternoon break



# 15:30 Clustering

- Determine core aspects and types of clustering in order to properly apply the algorithms to business problems
- Apply various clustering algorithms to data sets in order to solve common, applicable business problems

# 16:15 **Optimization**

- Identify the goals and constraints of a linear optimization
- Calculate a linear optimization in order to solve a business problem

# 17:00 Simulation

- Use data analysis performed on historical data and any applicable theory to construct a model
- Use a Monte Carlo analysis with the model in order to generate and assess the likelihood of predictions from the model
- 17:45 End of day

# Required post-work:

# **Measuring Distance (45 mins)**

Identify the meaning of dimensionality and its implications in analytics Calculate different types of distances and identify scenarios when each type is applicable

# **Classification Support Vector Machine (1 hour)**

Identify the basics of the support vector machine (SVM) classification algorithm Identify what a support vector is and its use in the classification algorithm Calculate a SVM classification to solve common business problems

# **Classification Decision Trees (1 hour)**

Identify the steps to build a decision tree classifier Apply the steps to create a basic decision tree Use a decision tree algorithm and appropriate metrics to solve a business problem and assess the quality of the solution



# **Day 5: Data Visualisation**

9:00 Opening remarks

# 9:05 Chart and Graph Selection

- Differentiate between the following graph and chart types and when to use them:
  - $\circ$  Categorical
  - Continuous
  - Time series
  - o Bivariate
  - $\circ$  Distribution

# 9:50 Introduction to Business Intelligence (BI)

- Identify business intelligence (BI) concepts and their common applications
- Differentiate between the major enterprise BI platforms and when each is appropriate
- Apply BI techniques (online analytical processing [OLAP], drill through, drill down, drill up)
- 10:35 Morning coffee break

# 11:00 **Report Building and Online Analytical Processing** (OLAP)

- Apply techniques for building reports and identify the best uses of the learned techniques
- Distinguish the elements of OLAP (online analytical processing)

# 12:00 Business Intelligence in Action

- Identify the steps and benefits of scorecard and strategy management and apply the steps in appropriate situations
- Distinguish between effective dashboard techniques
- 12:45 Lunch

# 13:45 Mashups

- Identify event streaming techniques and their uses
- Differentiate between types of mashups in order to determine the best mashup for a dashboard presentation
- Analyze trusted data in order to derive information



# 14:30 Data Visualization Best Practices

- Identify core data visualization rules in order to ensure quality report development
- Identify the goals of data visualization and how data visualization can benefit an entity
- Differentiate between the needs of different report users and identify appropriate report styles for each
- 15:15 Afternoon break

# 15:30 Reporting Options

- Differentiate between alerts and trends and the appropriate uses for each
- Distinguish the appropriateness of Self-Serve reports and their application in common scenarios
- Differentiate between best uses for BI techniques in order to ensure effective reporting

# 16:00 What Makes a Good Report

- Compare layout options and identify appropriate presentation choices for maximum effectiveness
- Differentiate between good and bad report implementations and the potential impact of poor implementation

# 16:30 Constructing Reports

- Distinguish between when to use reporting tools versus analysis tools
- Use core tools to build report and dashboard layouts to achieve maximum effectiveness
- 17:30 End of day